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The vertical diffusivity and mean velocity of 
particles in a horizontal water pipe 

By B. J. S. BARNARD AND A. M. BINNIE 
Engineering Laboratory, Cambridge 

(Received 20 July 1962) 

Small spheres of the same size but of relative density varying from 0.92 to 1-25 
were injected in turn into a horizontal water pipe, in which the flow was turbulent 
and the mean velocity was constant. A cross-section near the outlet was illumin- 
ated; the positions of the spheres as they crossed it were measured by photo- 
graphy, and the relation was established between the terminal velocity of the 
spheres in water and the vertical diffusivity. The velocity of the spheres along the 
pipe was found to be somewhat different in the galvanized steel and Perspex 
lengths of which the pipe was composed. The dispersion of the times of transit of 
the spheres increased slightly with their density. For purposes of comparison 
the theoretical velocity along the pipe was also calculated from the photographic 
measurements. 

1. Introduction 
Earlier papers in this series (Batchelor, Binnie & Phillips, 1955; Binnie & 

Phillips, 1958) have been concerned with the mean velocity of small spheres 
carried along in a horizontal water pipe. In the first the spheres were of neutral 
density, and in the second they were slightly buoyant or heavy. The experiments 
have now been extended to include spheres so heavy that they were frequently 
in contact with the bottom of the pipe, and an account is given below of timing 
measurements a t  three cross-sections of the pipe made in the same way as before. 
A few rather light spheres were also tried to test the symmetry of the results. 
The previous investigations showed that the mean velocity of the spheres was 
slightly greater than the discharge velocity, defined as the discharge, averaged 
over a long time, divided by the cross-section of the pipe. The discrepancy arose 
because the spheres, being of finite size, could not become immersed in the 
retarded layer near the wall. Now a markedly heavy or buoyant sphere may be 
expected to move more slowly than one of neutral buoyancy, and an object of 
the work was to examine the attractive possibility of finding a sphere that 
possessed a mean velocity exactly equal to the discharge velocity. 

In addition, for the first time photographic observations were made of the 
positions of the spheres as they crossed a vertical section of the pipe, and an 
attempt has been made to relate the two sets of results. From the cross-sectional 
measurements the mean vertical diffusivity has been calculated by means of an 
approximate theory, the validity of which was tested. 

3-2 
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2. Description of apparatus 
A number of changes were made in the existing 2in. pipe-line, some as the 

result of experience and others to accommodate the photographic equipment 
mentioned above. Three arrangements of the photocell detectors and of the 
galvanized steel and Perspex lengths in the 80 ft. straight require description; 
they are illustrated in figure 1. 

(i) The sequence used by Binnie & Phillips consisted of a 30ft. steel inlet 
length, a 1 ft. length of Perspex on which photocell A was mounted, two steel 
lengths S 1 and S 2 totalling 28 ft., two Perspex lengths P 1 and P 2 totalling 
11 ft., a steel length S3  of loft., and finally a 1 ft. Perspex length for the third 
photocell C. Photocell B was on P 1,  and the percentages of steel in AB and BC 
were 85 and 63. 
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FIGURE 1. Plans of the three arrangements of piping. The spheres were injected at I. 

(ii) As the cross-section to be photographed was necessarily close to the down- 
stream end and would have been disturbed by discontinuities close to it on the 
upstream side, the last four components were rearranged in the order: a l f t .  
Perspex length (on which the photocell B was mounted), S 3, P 1 and P 2, with C 
near the outlet of P 2. Thus the photocells A and B measured the lapsed time over 
S 1 and S2, and B and C over the composite length 53, P 1, P2. 

(iii) As will be described in $3, it was discovered that the apparatus was 
sufficiently accurate to record the dependence of mean sphere velocity on the 
nature of the wall. Thereupon photocell B was moved to the entry of P 1 so that 
the length AB was almost wholly of steel and BC wholly of Perspex. 

The original counter was replaced by two separate Ericsson dekatron counters, 
started as before by photocell A and stopped respectively by B and C. An in- 
verter was necessary to alter the pulses from the photocells into a form suitable 
for triggering the counters. This change increased the sensitivity of the photo- 
cells to such an extent that the direct-current supply tosthe 6 W bulbs and the 
valve filaments had to be obtained from accumulators. Again, one of the counters 
was used with two probes in the measuring tank to determine the discharge 
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velocity. The counters were operated off the 50c/s mains; and no frequency 
correction was necessary because the absolute values of the discharge velocity 
and the mean velocity of the spheres were not required with great precision- 
only the ratio of these quantities. 

At the downstream end of P 2 a 90" pitcher tee piece made of iron was attached, 
the flow through it being from line to branch and passing on to the measuring 
tank. The end of the straight part of the tee was blanked off by a glass window, 
through which photographs up the pipe were taken with a 35mm camera. The 
lengths P 1 and P 2 were wrapped in black paper except for a slit, 17 in. from the 
window and gin. wide, which was illuminated by three 150 W floodlights spaced 
at 120" round the pipe. 

The automatic device for injecting the spheres was modified to operate three 
times a minute instead of four, as the spheres were now expected to move more 
slowly. The camera shutter was kept open while a number of spheres passed by, 
therefore a second disk with cams was attached to the shaft of the injector motor, 
and these engaged a micro-switch operating two relays so that the floodlights 
were switched on only for 4sec during each cycle. As an additional precaution 
against fogging of the photographs, an auxiliary shutter was inserted in a tube 
between the window and the camera, and was controlled by a solenoid connected 
to the floodlight circuit. 

The tee on which the injection apparatus was mounted was replaced by a 
cross, thus the apparatus could be fixed upside down when spheres much lighter 
than water were to be used. The concentric orifice-plate, further upstream, that 
controlled the discharge through the pipe, was not entirely satisfactory because 
from time to time the detectors were spuriously operated, possibly by a group 
of air bubbles that might have accumulated behind the plate. To remove this 
disturbance, an orifice-plate was used in the form of a circle with a segment a t  
the top cut away. This gave a discharge velocity again about 5ft./sec, depending 
slightly on the temperature. The corresponding Reynolds number based on 
pipe diameter was about 6 x lo4. 

Polythene spheres were used once more, all being of nominal diameter 0.2 in., 
thus the ratio a of sphere to pipe diameter remained 0-1. More batches with 
varying amounts of loading were kindly given to us by the Plastics Division of 
Imperial Chemical Industries Ltd. Their relative densities were in the range 
0.92-1-25, and spheres of other densities were made by driving in short lengths 
of wire. When the terminal velocity P of the spheres in still water a t  the tem- 
perature of the tests was less than about 3in./sec, it  was measured directly in 
a long vertical tube. To sort the other spheres into batches while keeping their 
terminal velocity low and easily observed, the tube was filled with an alcohol- 
water mixture or a solution of common salt in water; then after the tests the 
density of the spheres was measured with a density-bottle in a constant-tem- 
perature room. This final step was later abandoned in favour of making up a 
solution in which the spheres neither sank nor floated, the density of the solution 
being then measured with the bottle. The corresponding values of V were 
calculated with the aid of the well-known empirical curve connecting the drag 
coefficient and the Reynolds number. 
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3. Preliminary experiments 
A typical example of the photographs is reproduced as figure 2, plate 1. 

Tests with very heavy spheres decided which of the circular markings represented 
the circumference of the illuminated cross-section, and the foot of the vertical 
diameter is indicated by the arrows. Each negative was measured in a Hilger 
Universal Projector set to a magnification of ten. The values of the x and y 
co-ordinates of the centres of the spheres were found to be repeatable to 0.002 in. 
The number of spheres that could be successfully photographed on a single 
exposure varied from three to ten, depending on the whiteness of the particular 
spheres in use and on the increasing insensitivity of the film as the exposure time 
was lengthened. With very heavy or light spheres another factor was the likeli- 
hood of spheres eclipsing each other a t  the bottom or top of the cross-section. 

The illuminated cross-section was 11 in. upstream from the pitcher tee, which 
was fitted in a horizontal plane, and any greater distance would have placed the 
camera too far away. It was therefore necessary to discover if the cross-section 
was influenced by the curved flow in the tee. A trial was made with 230 obser- 
vations of spheres for which the ratio y of terminal velocity V to discharge 
velocity U was only 0-0139. On another day, when y had changed slightly to 
0.0145 because the temperature had altered, 350 observations were obtained. 
The cross-sections on the photographs were divided into 10 pairs of vertical strips 
symmetrically disposed about the vertical diameter, and a count was made of 
the spheres in each strip. The x2 test for heterogeneity was applied by con- 
structing 2 x n tables in the manner due to Brandt & Snedecor which is explained 
in text-books, e.g. Mather (1943). The results for the two sets were x2 = 13.3 
and 9.6; and for 9 degrees of freedom the corresponding probabilities are found 
from the table to be about 0.15 and 0.4. Thus there was no significant bias between 
the observations on the left and right sides of the vertical diameter, and the 
tee did not influence the flow a t  the illuminated cross-section. 

Timing observations, varying in number from 198 to 375, were made at  six 
different values of y ,  and it was immediately noticeable that V(a,  y) ,  the mean 
sphere velocity along the pipe, was greater in AB, which was all steel, than in 
BC, which was about half steel and half Perspex. The discordancies were too 
great to be explained by the small differences in the cross-sectional areas. Suspi- 
cion fell on the various electrical circuits, but this was dispelled by comprehen- 
sive tests. It was then realized that the effect was due to the slightly rougher 
surface of the steel pipe. In  it, the velocity over the central part of the cross- 
section which was fully accessible to the spheres was greater, in order to com- 
pensate for the additional retardation near the walls. The effect had not been 
noticed by Binnie & Phillips as both their lengths AB and BC were composed of 
both materials. As mentioned in Q 2, the photocells were moved to new positions 
such that AB was all steel except for an insignificant length and BC was all 
Perspex; and as the timing over AC was now of little interest, the dekatrons 
were connected to measure directly the times over AB and BC. A trial with these 
positions showed greater discrepancies than before, thus confirming the &ve 
explanation. 
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4. Theoretical discussion 
(i) The mean vertical diffusivity g 

In the previous work an expression for 5 was derived on the assumption that 
y = V /  U was small. The theory must now be modified to remove this restriction. 

We define by p the probability density that the projection on a transverse 
plane of the centre of the sphere falls a t  any instant within a specified unit area 
in that plane. It is supposed again as an approximation that p is a functionp(2) 
of the vertical position co-ordinate only. We therefore consider an element of 
unit breadth situated a distance 2 above the pipe centre. Then, V being the 
terminal velocity of the spheres measured positively downwards, the probability 

FIGURE 3. Cross-section of pipe. 

of the sphere sinking in unit time across unit breadth of the horizontal plane 
defined by 2 is 

This must be balanced by the upward flux across the same area due to turbulent 

VP(Z).  (1) 

diffusion, which is 

where u, is the friction velocity, a is the pipe radius, and < is the dimensionless 
turbulent diffusivity for transport across horizontal planes. As before, we shall 
neglect the variation in gwith position and take it as the mean vertical diffusivity 
for turbulent flow in a pipe. It follows that 

hence 

where 
(4) 

( 5 )  

Equation (3) agrees with the expressions given by O’Brien (1933), Rouse (1939) 
and Vanoni (1946) for the vertical distribution of sediment in a watercourse. 
It is not invalidated by collisions with the wall, for the frequencies of sinking 
and rebounding across a horizontal plane near the wall are equal over a short 
time interval that includes the instant of impact. The constant of integration 
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p, is determined by the condition that p(z) integrated over the circle of radius 
1 -a  accessible to the centre of the sphere must equal unity. With the notation 
indicated in figure 3, it  appears that 

2 = (l-a)cos6’, (6) 

( 7 )  hence 1 = -Ion p, exp { M (  1 - a )  cos S} 2( 1 - a)2 sin2 8d8, 

and 
1 ( l - a ) M  

= 27T(1=311(( 1 - a) M )  * 

I I I 1 

2 1 0 1 
- 

log,, P ( 4  

FIGURE 4. Theoretical distribution of the vertical probability density p(z ) .  

When x + 0,  Il(x)/x -+ 3, therefore, for spheres of neutral density (y  = 0 ) ,  
(4) and (8) reduce to the expected result 

Figure 4 displays the straight-line relationships between log,,p(z) and x for 
positive values of M (that is, for heavy spheres) within the range of the experi- 
ments. The lines for negative values of M are obtained by reflexion about the 
line x = 0. 

(ii) The relation between p ( z )  and the mean velocity 
U(a ,  y )  of a sphere along the pipe 

We assume again that the mean velocity of the spheres whose centres are a t  
radius R is equal to the mean velocity u(R) of the fluid a t  radius R. Taking 
Z = R cos 6’ and r = R/a = z/cos 8, we see with the aid of figure 3 that the mean 
velocity of a sphere down the pipe is given by 
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On substituting (4) into (10) we obtain 

U(a,y)  = 2np0~01-~ lo (Mr)ru ( r )dr .  

It was shown by Taylor (1954) that u(r)  is given by 

u(r) = U + 4 . 2 5 ~ ~  - u,f(r), (12) 

where f(r) is a universal function. Then (1 1) becomes 

l--a  l - a  

( U  + 4 . 2 5 ~ ~ )  __ 11{( 1 - a) M }  - u, 1 I,(lMr) rf ( r )  dr] . 
M 0 

(13) 
For y = 0,  we find on using (9) that (13) reduces to 

The integral in (13) was evaluated numerically with the aid of the values of 
f ( r )  given by Taylor, who also calculated the integral in (14). 

(iii) The relation between p ( z )  and the photographic observations 

We consider the passage of the spheres across the fixed cross-section that was 
observed, and define by P(z)  the probability density of a sphere seen to be 
centred within a unit area distant x from the horizontal diameter. In  view of the 
definition of p ( z )  given at the beginning of 5 4(i) it appears that P(z) is propor- 
tional to the product of p ( z )  and the fluid velocity ~ ( 2 ) .  Hence the relation 
between the two kinds of probability density is of the form 

where C is found from the condition that, as before, p ( z )  summed over the 
accessible part of the cross-section must equal unity. 

5. Experimental results (i) Friction loss 

The values of u, for the steel and the Perspex were required in many of the 
calculations, and they were determined by means of pressure tappings close to 
the photocells A, B and C in their final positions. The reading AB gave the 
friction loss in the steel length which was preceded by an ample inlet length, 
whereas for BC no inlet length could be arranged. Nothing seems to be known 
about the transition length required for the fully developed velocity profile to 
change after an abrupt alteration in the wall roughness. The friction coefficient 
for the Perspex length was found to be very slightly below the Blasius value for 
smooth pipes. The discrepancy can be attributed t the fact that at B the tapping 
was close to a joint, and in the calculations thiskart of the pipe was taken as 
smooth with U / u ,  = 20.3, derived from a logarithmic formula given by Goldstein 
(1938). For the steel the measured value U/u,  = 18.8 was employed. Variations 
with temperature were inconsiderable. 
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(ii) The probability density p(x) and the diflusivity 6 in the Perspex pipe 

The illuminated cross-section was as much as 130 in. from the beginning of the 
Perspex pipe. This distance probably exceeded the transition length from steel 
to Perspex, and the observations can be regarded as made on the velocity 
distribution which is established in a smooth pipe. 

The accessible part of the photographed cross-section was divided into hori- 
zontal strips with boundaries a t  z = Z / a  = 0,0*1,0.2, . . ., 0.8,0.84, 0.86,0.88,0.9, 
the width of the strips being reduced in that part of the cross-section where 6 

M=O -0.5 -1.0 
- 1  

1 
-2 -1  0 

~ o g , ,  Pu(4 
FIGURE 5.  Measured distribution of the vertical probability density. y = - 0.027. 

was expected to change most rapidly. The number n(z) of spheres centred in 
each strip of area, say, A(z)  was counted. Then P(z) was given by 

where N was the total number of spheres in the cross-section. It then follows 
P(z)  = n(z) /NA(x) ,  (16) 

from (15) that 

Here u ( z )  is the mean fluid velocity over the strip. To evaluate it, the centre-line 
of each strip was divided into 20 elements of equal le gth, and the velocity a t  
the mid-point of each element was calculated from the well-known formula 

(18) 
t 

u ( ~ ) / u ,  = 5.5 + 5.7510glo ( u , y / ~ ) ,  
where v is the kinematic viscosity and u ( y )  is the velocity a t  a point distant y 
from the wall. This expression is approximately valid over the turbulent core 
but not over the viscous sublayer and the buffer layer, for which Schlichting 
(1955) gave the limits 0 < u,y/v < 5 and 5 < u,y/v < 70. However, for spheres 
touching the wall 0 < u,y/v < 170-180, thus their motion was not greatly 
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influenced by these layers. The mean of the calculated velocities was taken as 
u(x). The constant in (17) was determined by the condition 

ZP(444 = 1, (19) 

the summation inclu&ng all the strips. 
Two typical resulfs are displayed in figures 5 and 6 ;  the former is for fairly 

light spheres, and the latter is for the heaviest, which had a relative density 1.25. 
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FIGURE 7.  Effect of density upon the vertical diffusivity <. 
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Again the plotting is semi-logarithmic, so that the theoretical distribution lines 
transferred from figure 4 remain straight. The choice of M was matched as closely 
as possible to the experimental stepped distributions which generally followed 
one of the theoretical lines. Close to the wall, however, the distributions corre- 
sponded to progressively larger values of M .  Thus 5, as calculated from ( 5 ) ,  was 
nearly constant over the central part of the cross-section, but declined towards 
the wall, where i t  may be expected to fall to zero. 

For each batch of spheres 5 was estimated from diagrams like figures 5 and 6, 
and the results are plotted in figure 7. The approximate value of 6 was 0-3. 
It became larger for small values of I y I , but the result was then sensitive to chance 
variations in the experimental distributions. For when M but not y apparently 
almost vanished, 5 could become very great, and this happened in one of the 
tests. 

(iii) The mean velocity of the spheres 
( a )  I n  the steel pipe 

Figure 8 shows the mean values of %, given by 

G? = { U(a,  y )  - U ) /  U ,  (20) 

which were obtained by timing over lengths S 1 and S 2 in arrangement (ii), and 
over S 1, S2, and S 3  in arrangement (iii). The total number of observations was 
4019. The readings obtained by Binnie & Phillips with arrangement (i) were 
analysed with the transition length in BC taken as negligible. A small correction, 
depending on the relative lengths of steel and Perspex in AB and BC, was made 
to the observed times of transit in AB, which was mostly steel, and the results 
are included in figure 8. The diagram also contains three curves which give the 
theoretical relation between G? and y. They were calculated from (8) and (13) 
for 6 = 0.4, 0.5, 0-6 with the aid of the measured value of u,. The experimental 
values agree fairly well with the theoretical curve for 5 = 0.5. The discrepancy 
near y = 0, where the theoretical estimate is somewhat too small, is not easy 
to explain. The theory supposes that the mean velocity of a sphere situated with 
its centre at r is the same as that of a fluid element a t  radius r .  Thus the theory 
should overestimate V(a,  y) ,  although by an amount shown in the previous work 
with neutral spheres to be very small for a = 0.1. For a sphere of this relative size 
the figure shows that the zero value of % was approximately attained at y = 0.1 1. 
At higher discharge velocities this result may be somewhat altered, because the 
experiments were carried out at a Reynolds number corresponding to turbulence 
nearly but not quite fully developed. 

( b )  In  the Perspex pipe 

Values of % obtained from 2492 timing measurements with arrangement (iii) 
are also given in figure 8 together with the theoretical curves for five values of 6. 
At y = 0 these curves differ from those for steel because the values of u, for the 
two materials were unequal. The experiments were not in the range where $2 = 0, 
but the theoretical curves suggest that this result would have been reached a t  
about y = 0.05, which differs substantially from the result with the steel pipe. 
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For purposes of comparison, estimates of %were made from the distributions 
shown in the photographs. It was thought that greater accuracy would result 
from the use of the radial rather than the vertical distribution. Accordingly the 
accessible cross-section was divided into rings with boundaries at r = R/a = 0-2, 
0.4, 0-5, ..., 0.8, 0.84, 0.85, ..., 0.9, and the numbers of spheres whose centres 

fell within each ring were counted. Then, exactly as in 3 4 (iii) and 5 (ii) but with 
r substituted for z, we have 

where P(r)  is found as in (16) and the constant D is determined as before from 
the summation condition. Again employing the principle on which (10) is based, 
we deduce that 

the summation including all the rings. Thus the mean velocity can be found 
after the insertion of the appropriate velocity over each ring of area A(r) .  The 
simplest assumption is to take all the spheres centred within a ring to have the 
same velocity as the fluid at the mean radius of the ring. A more refined estimate, 
say %(r), is obtained if some allowance is made for the curvature of the mean 
velocity profile. Without serious error this can be done by direct integration if 
the contours of equal velocity over the profile of the sphere are taken as straight 

(22) U(a ,  7) = %(r) 4 9  u(r) ,  
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instead of curved. Figure 9 shows two spheres drawn to scale, one near the 
centre and the other at the wall, with the two kinds of velocity distribution 
marked on them. Near the centre the discrepancy is considerable but the annular 
area is small; at the wall, where the annular area is large and where, moreover, 
heavy and light spheres are most likely to be found, the approximation is good. 

FIGURE 9. Cross-section of pipe and spheres. 

We consider the profile, shown in figure 9, of radius CI with its centre distant 
r from the pipe centre. The velocity over the element is taken as uniform and 
equal to that at radius r + x,  which is given by the series expansion 

du(r) x2 d2u(r )  
d r  2! dr2 

u(r) +x- + - __ + .... 

Hence the mean velocity over the profile of the sphere is 

1 a2d2u(r) 1 3a4 d4u(r)  
4 2! dr2 4 ' 6 4 ! '  dr4 

=u(r)+-.--+- -- - +.... 

(23) 

Then, with u(r)  determined from the logarithmic expression (la), the values of 
@ plotted in figure 8 were calculated. They were somewhat greater than those 
obtained by timing, although the reverse was expected because of the transition 
length in BC. The correcting terms in (24) amounted to 0*0215u(r) at r = 0.895, 
ten terms in the expansion being required because near the wall, where the 
correction was important, the convergence of the series was very slow. 

The results, repeating a less marked tendency among the steel experiments, 
were not quite symmetrical about y = 0, and it is possible that this effect was 
due to the difference between the inertia of the spheres and that of the water they 
displaced. The theoretical curve 6 = 0.26 accords with many of the tests. Thus 
the value of 1[ was now lower, for the smoother wall gave rise to a lesser intensity 
of the eddying motion of the water. 
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(iv) The longitudinal dispersion coeficient K(a,  y )  

The timing measurements yielded the values of this coefficient defined by 
Batchelor et al. as 

x U [ T ( x ) - m p  
2au, P(X) K(a ,y)  = -- __-___ ) 

where F(z) is the average of the times T ( x )  taken for a sphere to travel a distance 
x. As figure 10 shows, the scatter of the results is considerable, but they are in 
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FIGURE 10. Effect of density on the longitudinal dispersion coefficient K(a, y). 
0 ,  Steel; 17, Perspex. 

agreement with the previous work. There is a slight tendency for K to fall as 
y increases. This again may be due to inertia effects, for we may expect that a 
heavy sphere will not entirely follow the movements of the surrounding liquid. 

Histograms were drawn to show the distribution of the times of travel in the 
steel lengths, and Gaussian curves with standard deviations calculated from the 
observations were superposed. The agreement was satisfactory in accordance 
with the theory which holds good for all spheres transported in turbulent flow 
regardless of their density. The magnitude of the standard deviations did 
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not vary systematically with y. For heavy spheres, for which y was 0.111, the 
standard deviation was 0.127 sec over a distance 40.75 ft. This is much the same 
as Batchelor et al. obtained for neutral spheres. Their figure 7 gives standard 
deviations of 0.101 and 0.189sec for distances 20-56 and 72-66ft. 
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FIGURE 2. Photograph of cross-section. 
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